G. Nabil, K. Bhise, S. Sau, M. Atef, H. A. El-banna et al., Nano-Engineered Delivery Systems for Cancer Imaging and Therapy: Recent Advances, Future Direction and Patent Evaluation, Drug Discov. Today, vol.24, pp.462-491, 2019.

S. Kim, Y. K. Lee, S. Kim, J. Park, D. U. Lee et al., Non-Covalent, Encapsulated Nanodrug Regulate the Fate of Intra-and Extracellular Trafficking: Impact on Cancer and Normal Cells, Angew. Chem., Int. Ed. Engl, vol.7, issue.6, pp.1010-1017, 2007.

D. Yang, S. Van, J. Liu, J. Wang, X. Jiang et al., Physicochemical Properties and Biocompatibility of a Polymer-Paclitaxel Conjugate for Cancer Treatment, Int. J. Nanomed, 2011.

S. Zhang, J. Zou, M. Elsabahy, A. Karwa, A. Li et al., Ethylene Oxide)-Block-Polyphosphester-Based Paclitaxel Conjugates as a Platform for Ultra-High Paclitaxel-Loaded Multifunctional Nanoparticles, Chem. Sci, 2013.

F. Correard, M. Roy, V. Terrasson, D. Braguer, M. A. Esteve et al., Delaying Anticancer Drug Delivery by Self-Assembly and Branching Effects of Minimalist Dendron-Drug Conjugates, Chemistry, vol.25, pp.9586-9591, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01830269

F. Wang, M. Porter, A. Konstantopoulos, P. Zhang, and H. Cui, Preclinical Development of Drug Delivery Systems for Paclitaxel-Based Cancer Chemotherapy, J. Control. Release, vol.267, pp.100-118, 2017.

M. A. Jordan and L. Wilson, Microtubules as a Target for Anticancer Drugs, Nat. Rev. Cancer, vol.4, pp.253-265, 2004.

H. Gelderblom, J. Verweij, K. Nooter, A. Sparreboom, . Cremophor et al., Eur. J. Cancer, vol.37, pp.1590-1598, 2001.

R. Yusuf, Z. Duan, D. Lamendola, R. Penson, and M. Seiden, Paclitaxel Resistance: Molecular Mechanisms and Pharmacologic Manipulation, Curr. Cancer Drug Targets, vol.3, 2003.

F. L. Cardoso, D. Brites, and M. A. Brito, Looking at the Blood-Brain Barrier: Molecular Anatomy and Possible Investigation Approaches, Brain Res. Rev, vol.64, pp.328-363, 2010.

A. M. Sofias, M. Dunne, G. Storm, and C. Allen, The Battle of, Nano" Paclitaxel. Adv. Drug Deliv. Rev, vol.122, pp.20-30, 2017.

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson et al., Therapeutic Strategies to Improve Drug Delivery across the Blood-Brain Barrier, Neurosurg. Focus, vol.38, issue.E9, 2015.

R. Stupp, W. P. Mason, . Van-den, M. J. Bent, M. Weller et al., Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, N. Engl. J. Med, vol.352, pp.987-996, 2005.

T. Garg, S. Bhandari, G. Rath, and A. K. Goyal, Current Strategies for Targeted Delivery of Bio-Active Drug Molecules in the Treatment of Brain Tumor, J. Drug Target, vol.23, pp.865-887, 2015.

M. P. Pinto, M. Arce, B. Yameen, and C. Vilos, Targeted Brain Delivery Nanoparticles for Malignant Gliomas, vol.12, pp.59-72, 2017.

S. Jeyapalan, J. Boxerman, J. Donahue, M. Goldman, T. Kinsella et al., Paclitaxel Poliglumex, Temozolomide, and Radiation for Newly Diagnosed High-Grade Glioma: A Brown University Oncology Group Study, Am. J. Clin. Oncol, vol.37, pp.444-449, 2014.

H. Elinzano, M. Glantz, M. Mrugala, S. Kesari, D. E. Piccioni et al., PPX and Concurrent Radiation for Newly Diagnosed Glioblastoma Without MGMT Methylation: A Randomized Phase II Study: BrUOG 244, Am. J. Clin. Oncol, vol.41, pp.159-162, 2018.

X. Ke, B. Zhao, X. Zhao, Y. Wang, Y. Huang et al., The Therapeutic Efficacy of Conjugated Linoleic Acid -Paclitaxel on Glioma in the Rat, Biomaterials, pp.5855-5864, 2010.

D. Li, K. Yang, J. Li, X. Ke, Y. Duan et al., Antitumor Efficacy of a Novel CLA-PTX Microemulsion against Brain Tumors: In Vitro and in Vivo Findings, Int. J. Nanomed, vol.7, pp.6105-6114, 2012.

J. Wang, W. Liu, Q. Tu, J. Wang, N. Song et al., Folate-Decorated Hybrid Polymeric Nanoparticles for Chemically and Physically Combined Paclitaxel Loading and Targeted Delivery, Biomacromolecules, vol.12, pp.228-234, 2011.

Y. Jiang, X. Wang, X. Liu, W. Lv, H. Zhang et al., Enhanced Antiglioma Efficacy of Ultrahigh Loading Capacity Paclitaxel Prodrug Conjugate Self-Assembled Targeted Nanoparticles, ACS Appl. Mater. Interfaces, vol.9, pp.211-217, 2017.

A. Eldar-boock, K. Miller, J. Sanchis, R. Lupu, M. J. Vicent et al., Integrin-Assisted Drug Delivery of Nano-Scaled Polymer Therapeutics Bearing Paclitaxel, Biomaterials, vol.32, pp.3862-3874, 2011.

Y. Wang and A. Hu, Carbon Quantum Dots: Synthesis, Properties and Applications, J. Mater. Chem. C, vol.2, pp.6921-6939, 2014.

R. C. So, J. E. Sanggo, L. Jin, J. M. Diaz, R. A. Guerrero et al., Gram-Scale Synthesis and Kinetic Study of Bright Carbon Dots from Citric Acid and Citrus Japonica via a Microwave-Assisted Method, ACS Omega, vol.2, pp.5196-5208, 2017.

A. Cayuela, M. L. Soriano, C. Carrillo-carrio?, and M. Valca?cel, Semiconductor and Carbon-Based Fluorescent Nanodots: The Need for Consistency, Chem. Commun, vol.52, pp.1311-1326, 2016.

M. Zhang, L. Hu, H. Wang, Y. Song, Y. Liu et al., One-Step Hydrothermal Synthesis of Chiral Carbon Dots and Their Effects on Mung Bean Plant Growth, Nanoscale, vol.10, pp.12734-12742, 2018.

A. Sciortino, E. Marino, B. Van-dam, P. Schall, M. Cannas et al., Solvatochromism Unravels the Emission Mechanism of Carbon Nanodots, J. Phys. Chem. Lett, vol.7, pp.3419-3423, 2016.

J. Shangguan, D. He, X. He, K. Wang, F. Xu et al., Label-Free Carbon-Dots-Based Ratiometric Fluorescence PH Nanoprobes for Intracellular PH Sensing, Anal. Chem, vol.88, pp.7837-7843, 2016.

J. Zhang and S. Yu, Carbon Dots: Large-Scale Synthesis, Sensing and Bioimaging. Mater. Today, vol.19, pp.382-393, 2016.

S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang et al., The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nanodots, and Polymer Dots): Current State and Future Perspective, Nano Res, vol.8, pp.355-381, 2015.

Y. Song, S. Zhu, S. Zhang, Y. Fu, L. Wang et al., Investigation from Chemical Structure to Photoluminescent Mechanism: A Type of Carbon Dots from the Pyrolysis of Citric Acid and an Amine, J. Mater. Chem. C, pp.3-5976, 2015.

S. Zhu, X. Zhao, Y. Song, S. Lu, and B. Yang, Beyond Bottom-up Carbon Nanodots: Citric-Acid Derived Organic Molecules, Nano Today, vol.11, pp.128-132, 2016.

W. Kasprzyk, S. Bednarz, P. Z?udzki, M. Galica, and D. Bogda?, Novel Efficient Fluorophores Synthesized from Citric Acid. RSC Adv, vol.5, pp.34795-34799, 2015.

Y. Xu, M. Wu, Y. Liu, X. Feng, X. Yin et al., Nitrogen-Doped Carbon Dots: A Facile and General Preparation Method, Photoluminescence Investigation, and Imaging Applications, Chemistry, vol.19, pp.2276-2283, 2013.

M. J. Krysmann, A. Kelarakis, P. Dallas, and E. P. Giannelis, Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission, J. Am. Chem. Soc, vol.134, pp.747-750, 2012.

Y. Song, S. Zhu, and B. Yang, Bioimaging Based on Fluorescent Carbon Dots, RSC Adv, 2014.

J. Schneider, C. J. Reckmeier, Y. Xiong, M. Von-seckendorff, A. S. Susha et al., Molecular Fluorescence in Citric Acid-Based Carbon Dots, J. Phys. Chem. C, p.121, 2014.

Y. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Fernando et al., Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence, J. Am. Chem. Soc, vol.128, pp.7756-7757, 2006.

, ACS Omega Article

, ACS Omega, vol.4, pp.18342-18354, 2019.

M. Chakrabarti, R. Kiseleva, A. Vertegel, and S. K. Ray, Carbon Nanomaterials for Drug Delivery and Cancer Therapy, J. Nanosci. Nanotechnol, vol.15, pp.5501-5511, 2015.

S. Ruan, J. Qian, S. Shen, J. Zhu, X. Jiang et al., A Simple One-Step Method to Prepare Fluorescent Carbon Dots and Their Potential Application in Non-Invasive Glioma Imaging, Nanoscale, vol.6, pp.10040-10047, 2014.

K. E. Zakrzewska, A. Samluk, M. Wierzbicki, S. Jaworski, M. Kutwin et al., Analysis of the Cytotoxicity of Carbon-Based Nanoparticles, Diamond and Graphite, in Human Glioblastoma and Hepatoma Cell Lines, PLoS One, vol.10, 2015.

F. Ostadhossein and D. Pan, Functional Carbon Nanodots for Multiscale Imaging and Therapy, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol, vol.9, 1436.

C. Lee, W. Kwon, S. Beack, D. Lee, Y. Park et al., Biodegradable Nitrogen-Doped Carbon Nanodots for Non-Invasive Photoacoustic Imaging and Photothermal Therapy, Theranostics, vol.6, pp.2196-2208, 2016.

Y. Wu, H. Wu, C. Kuan, C. Lin, L. Wang et al., Multi-Functionalized Carbon Dots as Theranostic Nanoagent for Gene Delivery in Lung Cancer Therapy, Sci. Rep, 2016.

M. Zheng, S. Ruan, S. Liu, T. Sun, D. Qu et al., Self-Targeting Fluorescent Carbon Dots for Diagnosis of Brain Cancer Cells, ACS Nano, vol.9, pp.11455-11461, 2015.

K. J. Ong, T. J. Maccormack, R. J. Clark, J. D. Ede, V. A. Ortega et al., Widespread Nanoparticle-Assay Interference: Implications for Nanotoxicity Testing, vol.9, 2014.

J. Wang, J. Liu, and . Pei?, Folic Acid Modified Carbon Nanodots for Cancer Cell-Targeted Delivery and Two-Photon Excitation Imaging, RSC Adv, vol.6, 2016.

M. Lan, S. Zhao, Z. Zhang, L. Yan, L. Guo et al., Two-Photon-Excited near-Infrared Emissive Carbon Dots as Multifunctional Agents for Fluorescence Imaging and Photothermal Therapy, Nano Res, vol.10, pp.3113-3123, 2017.

J. Wang, Z. Zhang, S. Zha, Y. Zhu, P. Wu et al., Carbon Nanodots Featuring Efficient FRET for Two-Photon Photodynamic Cancer Therapy with a Low Fs Laser Power Density, Biomaterials, vol.35, pp.9372-9381, 2014.

J. Tang, B. Kong, H. Wu, M. Xu, Y. Wang et al., Carbon Nanodots Featuring Efficient FRET for Real-Time Monitoring of Drug Delivery and Two-Photon Imaging, Adv. Mater, vol.25, pp.6569-6574, 2013.

T. Lin, P. Zhao, Y. Jiang, Y. Tang, H. Jin et al., Blood-Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy, ACS Nano, vol.10, pp.9999-10012, 2016.

X. Cheng, X. Tian, A. Wu, J. Li, J. Tian et al., Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner, ACS Appl. Mater. Interfaces, vol.7, 2015.

D. G. Kingston and . Taxol, The Chemistry and Structure-Activity Relationships of a Novel Anticancer Agent, vol.12, pp.222-227, 1994.

X. J. Xia, J. Peng, P. X. Zhang, D. J. Jin, and Y. L. Liu, Validated HPLC Method for the Determination of Paclitaxel-Related Substances in an Intravenous Emulsion Loaded with a Paclitaxel? Cholesterol Complex, Indian J. Pharm. Sci, vol.75, pp.672-679, 2013.

I. J. Gomez, B. Arnaiz, M. Cacioppo, F. Arcudi, and M. Prato, Nitrogen-Doped Carbon Nanodots for Bioimaging and Delivery of Paclitaxel, J. Mater. Chem. B, vol.6, pp.5540-5548, 2018.

A. Pagano, N. A. Ste, P. Honore, M. A. Este, N. A. Ve et al., Nanodrug Potential in Cancer Therapy: Efficacy/Toxicity Studies in Cancer Cells, Int. J. Nanotechnol, vol.9, pp.502-516, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01772650

D. T. Leong and K. W. Ng, Probing the Relevance of 3D Cancer Models in Nanomedicine Research, Adv. Drug Deliv. Rev, vol.79, pp.95-106, 2014.

D. Wang, W. Liu, J. Chang, X. Cheng, X. Zhang et al., Bioengineering Three-Dimensional Culture Model of Human Lung Cancer Cells: An Improved Tool for Screening EGFR Targeted Inhibitors

C. Xu and W. W. Webb, Measurement of Two-Photon Excitation Cross Sections of Molecular Fluorophores with Data from 690 to 1050 Nm, J. Opt. Soc. Am. B, vol.13, pp.481-491, 1996.

M. A. Albota, C. Xu, and W. W. Webb, Two-Photon Fluorescence Excitation Cross Sections of Biomolecular Probes, vol.690, p.960

, Nm. Appl. Opt, vol.37, pp.7352-7356, 1998.

M. H. Werts, N. Nerambourg, D. Pe?e?ry, Y. L. Grand, and M. Blanchard-desce, Action Cross Sections of Two-Photon Excited Luminescence of Some Eu(III) and Tb(III) Complexes, Photochem. Photobiol. Sci, vol.4, pp.531-538, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01206347

I. D. Alves, M. Carre, M. Montero, S. Castano, S. Lecomte et al., A Proapoptotic Peptide Conjugated to Penetratin Selectively Inhibits Tumor Cell Growth, Biochim. Biophys. Acta, 1838.
URL : https://hal.archives-ouvertes.fr/hal-00989572

R. Berges, E. Denicolai, A. Tchoghandjian, N. Baeza-kallee, S. Honore et al., Proscillaridin A Exerts Anti-Tumor Effects through GSK3? Activation and Alteration of Microtubule Dynamics in Glioblastoma, Cell Death Dis, vol.9, p.984, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01983341

F. Correard, K. Maximova, M. Esteve, C. Villard, M. Roy et al., Gold Nanoparticles Prepared by Laser Ablation in Aqueous Biocompatible Solutions: Assessment of Safety and Biological Identity for Nanomedicine Applications, Int. J. Nanomed, vol.9, pp.5415-5430, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01310706

E. Pasquier, M. Tuset, J. Street, S. Sinnappan, K. L. Mackenzie et al., Concentration-and Schedule-Dependent Effects of Chemotherapy on the Angiogenic Potential and Drug Sensitivity of Vascular Endothelial Cells, Angiogenesis, vol.16, pp.373-386, 2013.

R. Berges, A. Tchoghandjian, S. Honore, M. Esteve, D. Figarella-branger et al., The Novel Tubulin-Binding Checkpoint Activator BAL101553 Inhibits EB1-Dependent Migration and Invasion and Promotes Differentiation of Glioblastoma Stem-like Cells, Mol. Cancer Ther, vol.15, pp.2740-2749, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01478393